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Abstract. By using the random-phase approximation and thef -sum rule approach, we make
a comparative analysis of multipole excitation modes in an electron gas confined on a spherical
surface (SSEG) and normal modes in an electron gas constrained to a flat plane (i.e. a two-
dimensional electron gas (2DEG)). In the SSEG, we investigate the size dependence of multipole
modes by varying the electron number and the sphere radiusa simultaneously with the average
electron density fixed. TheL/a dependence of multipole-mode energies, whereL denotes the
multipole order, is compared with the energy dispersion of normal modes in the 2DEG. The
series of the highest-energy multipole modes corresponds to the two-dimensional (2D) plasmon
branch, while all the other multipole modes correspond to the single-particle excitation (SPE)
continuum. With decrease inL/a, each multipole mode acquires more definite character of
collective excitation or SPE, and the highest-energy multipole mode starts to occupy the greater
part of thef -sum intensity. AsL increases withL/a fixed, the components of the highest-
energy multipole mode and all the other multipole modes in thef -sum intensity approach those
of the 2D plasmon mode and the SPE modes at the corresponding wavenumber in thef -sum
intensity, respectively. This indicates that multipole modes with higherL are more analogous
in character to normal modes in the 2DEG. This analysis elucidates similarities and differences
between multipole modes in the SSEG and normal modes in the 2DEG.

1. Introduction

Recent development of synthetic techniques has made it possible to produce a variety of
materials with layered electron systems. Quasi-two-dimensional (2D) electron systems can
be formed at semiconductor–insulator interfaces such as Si–SiO2 [1–3] and at semiconductor
heterojunctions such as GaAs/AlxGa1−xAs [4–7]. The monolayer graphite on transition-
metal carbide surfaces also exhibits 2D character in its electronic properties [8, 9]. In a
family of fullerene molecules, the electron systems are localized around spherical hollow-
cage structures of carbon atoms [10, 11]. In a species of carbon nanotubes, some of
which are metallic, the electron systems are localized around cylindrical tube structures of
carbon atoms [12]. We can understand the essential features of excitations in these layered
electron systems by examining the dynamical response of those electron gases which are
confined on flat planes [13–17], spherical surfaces [18] and cylindrical surfaces [19–21].
This simplified description of layered electron systems allows us to perform most of our
calculations analytically, although we have to beware of its limitations in representing real
systems.

Our previous work has investigated the size dependence of multipole excitation modes
in an electron gas confined on a spherical surface [18]. Hereafter, this electron gas will be
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abbreviated as SSEG. In this work, the radius of the sphere is varied with the mean electron
density fixed, and the dynamical response of the SSEG is treated within the random-phase
approximation (RPA). A multipole mode higher than a dipole mode is composed of various
electronic transition processes involving change in the orbital angular momentuml. The
above investigation has shown that, with increase in the size, each multipole mode acquires
a more definite character of collective excitation or single-particle excitation (SPE). This
gradual variation in the mode character, which stems from the finiteness of the SSEG, can be
analysed quantitatively by evaluating the contribution of each constituent transition process
to the energy-loss intensity of the mode.

In the present work, we make a comparative analysis of multipole modes in the SSEG
and normal modes in an electron gas constrained to a flat plane (i.e. a two-dimensional
electron gas (2DEG)). The SSEG resembles the 2DEG in that these electron systems are
both sharply localized in one direction, namely in the radial or plane-normal direction. On
the other hand, the SSEG differs from the 2DEG in that the former is finite. In multipole
modes of the SSEG, the arc length 2πa/L, wherea and L signify the sphere radius and
the multipole order, respectively, characterizes the variation in the induced charge density
along the spherical surface, andL/a corresponds to the wavenumberQ in the 2DEG. The
L/a dependence of multipole-mode energies is compared with the energy dispersion of
normal modes in the 2DEG. The mode character is reflected in the energy-loss intensity of
the mode. As a multipole mode takes a more collective excitation character, it occupies
a greater fraction of thef sum of the energy-loss intensity. On the other hand, as a
multipole mode acquires a more SPE character, it occupies a smaller fraction of thef -
sum intensity. With a change in the multipole orderL, we examine thef -sum intensity
and its distribution among multipole modes at chosenL/a, in comparison with thef -sum
intensity and its distribution among normal modes at the corresponding wavenumberQ.
This comparative analysis reveals similarities and differences between multipole modes in
the SSEG and normal modes in the 2DEG.

2. Theory

In this section, we represent an essential part of a theoretical scheme for the following
analysis. Details of the theoretical scheme for multipole modes in the SSEG have already
been given in [18]. By means of the RPA, we investigate the dynamical response of an
electron system to the external potentialU oscillating in time with angular frequencyω.

First, we formulate the multipole response of the SSEG. For simplicity of treatment,
we assume that the SSEG is spherically symmetric in its ground state, namely that a finite
number of electrons with a closed-shell configuration are confined by a one-electron potential
of spherical symmetry. Each energy eigenstate is specified byl andm, namely the orbital
angular momentum and the magnetic quantum numbers, and its angular dependence is
described by a spherical harmonicYlm(θ, φ) in spherical polar coordinates with their origin
at the centre of the sphere. Eigenstates ofl > 0 are degenerate with respect tom, and a
group of 2(2l+1)-fold degenerate states including spin constitute an electron shell, which is
labelledl. Each occupied electron shell is completely filled in a closed-shell configuration.
The energy of an electron shelll is expressed as

εl = h̄2l(l + 1)/2µa2 (1)

with the electron massµ and the sphere radiusa. The energyεl represents the centrifugal
potential energy or, in other words, the kinetic energy along the spherical surface. The
(L, M) componentULM(ω)YLM(θ, φ) of the external potential at the spherical surface
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gives rise to the same componentδσLM(ω)YLM(θ, φ) of the induced areal charge density
and, consequently, the componentVLM(ω)YLM(θ, φ) of the total potential at the spherical
surface. The total potentialV is composed of the external potentialU and the induced
Coulomb potential generated byδσ . The (L, M) componentsδσLM(ω) and VLM(ω) can
be determined by the following equations:

δσLM(ω) = χ0
L(ω)VLM(ω) (2)

VLM(ω) = ULM(ω) + 4πa

2L + 1
δσLM(ω) (3)

where the susceptibilityχ0
L(ω) takes the form

χ0
L(ω) = e2

2πa2

∑
l,l′

(2l + 1)(2l′ + 1)

(
l l′ L

0 0 0

)2
f (εl) − f (εl′)

εl − εl′ + h̄ω + iη
. (4)

In this equation,f (ε) and η denote the Fermi–Dirac distribution function for eigenstates
and an infinitesimal positive constant, respectively, and the spin degeneracy is taken into
account. The parenthesized (2× 3) array of numbers signifies the Wigner 3j symbol,
whose value vanishes unless|l′ − l| 6 L 6 l + l′ and l + l′ + L = even integer [22]. The
3j symbol prescribes which electronic transition processes contribute to excitations of the
electron system. The dielectric function is given by

εL(ω) = ULM(ω)/VLM(ω) = 1 − 4πa

2L + 1
χ0

L(ω). (5)

The energy-loss function defined by

FL(ω) = Im
[−1/εL(ω)

]
(6)

describes the intensity of the energy loss which occurs in response to the (L, M) component
of U . In equation (6), the symbol Im denotes the imaginary part. Energy values of excitation
modes are given by the zeros ofεL(ω), and the integrated energy-loss intensityI of each
mode is defined by the area of the corresponding resonance peak in theω dependence of
FL(ω):

I =
∫

peak

FL(ω) d(h̄ω) =
∫

peak

Im
[−1/εL(ω)

]
d(h̄ω). (7)

The dielectric function defined in equation (5) as the ratio ofULM(ω) to VLM(ω) does
not depend uponM and, consequently, the energy and the energy-loss intensity of each
excitation mode are independent ofM, whenM is varied in the allowed range−L 6 M 6 L

with L fixed.
As seen from equations (2) and (3), each transition process occurs in response to the total

potentialV involving contributions of all the transition processes. This indicates that each
transition process interacts with itself spuriously. We require the self-interation correction
(SIC) to examine quantitatively the electronic structure [23, 24] and excitation [25, 26] of
small systems such as small metal spheres [23, 25, 26] and spherical metal shells [24]. In
small metal clusters with electron numberN 6 40, the SIC yields an appreciable red shift
of the surface-plasmon energy, which leads to better agreement with experimental results
(see table 2 in [25] or [26]). In our analysis, we calculate multipole modes in the SSEG
in a broad size region 86 N 6 1352. Although our treatment without the SIC may cause
appreciable inaccuracy in the smallestN range in this broad size region, it has no substantial
influence on our analysis in the next section.
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The dynamical response of the 2DEG can be formulated in a similar manner to that of
the SSEG [13]. Each excitation mode specified by wavevectorQ and angular frequencyω
is described by the following pair of equations:

δσ (Q, ω) = χ0(Q, ω)V (Q, ω) (8)

V (Q, ω) = U(Q, ω) + (2π/Q) δσ(Q, ω) (9)

where the susceptibilityχ0(Q, ω) is written in the form

χ0(Q, ω) = 2e2
∫

d2K

(2π)2

f (K + Q) − f (K)

ε(K + Q) − ε(K) + h̄ω + iη
. (10)

In this equation,ε(K) is the energy dispersion of electrons given byε(K) = h̄2K2/2µ,
and f (K) is the Fermi–Dirac distribution function for electron stateK. The dielectric
function ε(Q, ω) is given by

ε(Q, ω) = U(Q, ω)/V (Q, ω) = 1 − (2π/Q)χ0(Q, ω) (11)

and the energy-loss functionF(Q, ω) is defined by

F(Q, ω) = Im[−1/ε(Q, ω)]. (12)

For each 2D plasmon mode, the integrated energy-loss intensityI is defined by

I =
∫

peak

F (Q, ω) d(h̄ω) =
∫

peak

Im[−1/ε(Q, ω)] d(h̄ω) (13)

in the same manner as in equation (7). At temperatureT = 0, the Fermi–Dirac distribution
function f (K) becomes a step function, and theK integral in equation (10) can be
performed analytically [13].

Next, we derive thef -sum rules, namely the sum rules for the energy-loss function
of the SSEG and the 2DEG. The susceptibilityχ0

L(ω) in equation (2) orχ0(Q, ω) in
equation (8) describes the independent-particle response to the total self-consistent potential
V . Alternatively, we can introduce the susceptibilityχ that describes the response of
interacting electrons to the external potentialU . In terms ofχ , we can generally express
the induced charge densityδρ in real space as

δρ(r, ω) =
∫

d3r′ χ(r, r′, ω)U(r′, ω). (14)

The susceptibilityχ(r, r′, ω) is what is called the retarded density correlation function.
The susceptibilityχ(r, r′, ω) satisfies the following sum rule [27]:

1

π

∫ ∞

−∞
dω ω Im[χ(r, r′, ω)] = e2

µ

[
n0(r) 1δ(r − r′) + ∇n0(r) · ∇δ(r − r′)

]
(15)

wheren0(r) is the number density of interacting electrons in the ground state, and1 and∇
signify the Laplacian and the gradient operator, respectively, with respect tor. We apply
the general sum rule in equation (15) to our special cases of the SSEG and the 2DEG. The
SSEG can be regarded as an electron system sharply localized around a spherical surface
at r = a, and the ground-state densityn0(r) is assumed to be spherically symmetric. The
susceptibilityχL(ω) describing the (L, M) excitation mode as

δσLM(ω) = χL(ω)ULM(ω) (16)

can be obtained by integratingχ(r, r′, ω) as

χL(ω) = 1

a2

∫
d3r

∫
d3r′ Y ∗

LM(θ, φ)χ(r, r′, ω)YLM(θ ′, φ′) (17)
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and the Diracδ function in equation (15) can be written as

δ(r − r′) = δ(r − r ′)
r2

∑
L,M

YLM(θ, φ)Y ∗
LM(θ ′, φ′) (18)

in terms of spherical harmonics. The two variable sets of(r, θ, φ) and (r ′, θ ′, φ′) are the
spherical polar coordinates that represent the position vectorsr and r′, respectively. By
using equations (17) and (18), we can convert the general expression (15) to the sum rule
for χL(ω):

1

π

∫ ∞

−∞
dω ω Im

[
χL(ω)

] = −L(L + 1)
nse

2

µa2
(19)

wherens is the electron number per unit area in the ground state. The dielectric function
εL(ω) is related toχL(ω) by

1

εL(ω)
= 1 + 4πa

2L + 1
χL(ω) (20)

and the real and imaginary parts ofεL(ω) are an even function and an odd function,
respectively, ofω. Accordingly, equation (19) can be rewritten as

Rtl ≡
∫ ∞

0
dω ω Im

[
− 1

εL(ω)

]
= π

2

L(L + 1)

2L + 1

4πnse
2

µa
. (21)

This is thef -sum rule for multipole excitations in the SSEG.
The 2DEG is an electron system sharply localized around a plane, and the ground-

state densityn0(r) is assumed to be uniform along the plane. The susceptibilityχ(Q, ω)

describing theQ mode as

δσ (Q, ω) = χ(Q, ω)U(Q, ω) (22)

is given by

χ(Q, ω) = 1

A

∫
d3r

∫
d3r′ exp(−iQ · R)χ(r, r′, ω) exp(iQ · R′) (23)

whereA is the area of the plane andR represents the plane-parallel component ofr. For
the δ function in equation (15), we employ the expression

δ(r − r′) = δ(z − z′)
1

A

∑
Q

exp [iQ · (R − R′)] (24)

where thez axis is taken to be normal to the plane. With the aid of equations (23) and
(24), we can obtain the sum rule forχ(Q, ω):

1

π

∫ ∞

−∞
dω ω Im[χ(Q, ω)] = −nse

2

µ
Q2 (25)

which leads to thef -sum rule already known [13]:

Rtl ≡
∫ ∞

0
dω ω Im

[
− 1

ε(Q, ω)

]
= π

2

2πnse
2

µ
Q. (26)
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3. Analysis

By means of the theoretical framework in the preceding section, we examine multipole
excitation modes in the SSEG in an order range 16 L 6 5 and normal modes in the 2DEG.
In the SSEG, we vary the electron numberN and the sphere radiusa simultaneously with
the average electron densityns fixed, and we choose electron systems with closed-shell
configurations. The fixedns-value corresponds to the electron density parameterrs = 2,
wherers is related tons by

π
(
rsaB

)2
ns = 1 (27)

with the Bohr radiusaB = h̄2/µe2. The sphere radiusa can be expressed as

a/aB =
√

Nrs/2 (28)

in terms ofN and rs . We employ the samens-value for the 2DEG also. We can compare
the size dependence of multipole-mode energies of the SSEG in figure 1(a) with the energy
dispersion of normal modes of the 2DEG in figure 1(b). In the SSEG, the electron numberN

is varied in the range 86 N 6 1352. The arc lengthλL = 2πa/L in the SSEG characterizes
the variation in the induced charge density along the spherical surface in a similar fashion
to the wavelengthλ = 2π/Q in the 2DEG. Accordingly, the value ofL/a in the SSEG
can be considered to correspond to the wavenumberQ in the 2DEG. In figure 1(a), full
circles, full triangles, open circles, open triangles and open squares indicate energy values
of multipole modes of orderL = 1, 2, 3, 4 and 5, respectively, as functions ofL/a. In
figure 1(b), a curve and a shaded area represent the dispersion branch of 2D plasmons and
the SPE continuum, respectively. Plasmon modes decay away when they enter the SPE
continuum. The abscissa and the ordinate are both indicated on a logarithmic scale and in
atomic units (au). In figure 1(a), the broken and chain lines are the guide lines of(L/a)1/2

and L/a, respectively, to view the size dependence. Similarly, in figure 1(b), the broken
and chain lines are the guide lines ofQ1/2 andQ, respectively, to see theQ dependence.
As exhibited in figure 1(a), energy values of the highest-energy multipole modes in the
SSEG line up substantially on the same curve independent ofL, which corresponds to the
plasmon branch of the 2DEG in figure 1(b). On the other hand, the energy values of all the
other multipole modes in the SSEG are dispersed in a lower region, and the upper series
of the energy points corresponds to the upper edge of the SPE continuum in figure 1(b).
With decrease inL/a andQ, the sequence of the highest-energy multipole modes and the
plasmon branch begin to vary as(L/a)1/2 and Q1/2, respectively, while the upper series
of the lower multipole modes and the upper edge of the SPE continuum start to vary as
L/a andQ, respectively. Figure 2 displays only the energy points ofL = 5 extracted from
figure 1(a). TheL/a dependence of mode energies in each order of 16 L 6 4 can be
deduced from figure 1 in our previous work [18], although the plot in this figure is for a
narrower size range 86 N 6 512. A dipole mode ofL = 1 is constituted only by the
transition process fromlF to lF + 1 (1l = 1). Here, lF denotes the angular momentum
of the highest occupied shell. A quadrupole mode ofL = 2 is made up of two transition
processes oflF → lF + 2 andlF − 1 → lF + 1 (1l = 2) unlesslF = 0. A multipole mode
of higherL is composed of a larger number of transition processes involving a change inl.

We focus our attention on multipole modes ofL = 5 in figure 2. WhenlF 6 4,
that is L/a 6

√
2/rs au, each mode is composed of five transition processes of1l = 5

(lF → lF +5, lF −1 → lF +4, lF −2 → lF +3, lF −3 → lF +2, lF −4 → lF +1), three
processes of1l = 3 (lF → lF + 3, lF − 1 → lF + 2, lF − 2 → lF + 1) and one process of
1l = 1 (lF → lF + 1). These nine processes in all lead to nine modes at each size, except
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Figure 1. Comparison of (a) theL/a dependence of multipole-mode energies in the SSEG with
(b) the energy dispersion of normal modes in the 2DEG. The fixed average electron density
corresponds to the electron density parameterrs = 2. In (b), PL and SPE denote the plasmon
branch and the single-particle excitation continuum, respectively.

for the case oflF = 4 where two of these processes happen to have the same energy change.
We letω(l → l′) denote the energy change involved in the process ofl → l′. With decrease
in L/a, the values ofω(l → l′) for 1l = 5 or 3 gradually converge to form a fine series
that is separate from otherω(l → l′) values in energy distribution and that varies asa−1.
A transition process operates to enhance the energy-loss intensity when its energy change
ω(l → l′) is lower than the mode energy, while a transition process acts to reduce the
energy-loss intensity when its energy changeω(l → l′) is higher than the mode energy. At
each size, the energy of the highest-energy mode is higher than any value ofω(l → l′) and,
in this mode, all the constituent transition processes cooperate to enhance the energy-loss
intensity. With decrease inL/a, the energy of the highest-energy mode begins to become
definitely separated from the energy values of other modes, and the constituent transition
processes tend to make more comparable contributions to the excitation. This indicates that
the highest-energy mode acquires a more collective excitation character [18]. Next, we turn
our attention to lower-energy modes. Each energy of these modes intervenes between two
adjacent values ofω(l → l′). Accordingly, following the above-mentioned size dependence
of ω(l → l′), with decrease inL/a, energy values of these modes start to vary asa−1 and
divide into two fine series and one isolated value, as exhibited in figure 2. AsL/a becomes
smaller, a small number of transition processes whose energy changes are close to the mode
energy start to make the dominant contribution to the energy-loss intensity, and there occurs
a stronger cancellation between those transition processes whose energy changes are just
below and above the mode energy. This implies that lower-energy modes take more SPE
character with decrease inL/a [18]. Incidentally, when the mode energy lies between two
series ofω(l → l′) with different l changes, this variation in the mode character is not so
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Figure 2. L/a dependence of multipole-mode energies withL = 5, drawn from the entire plot
in figure 1(a).

remarkable as it is when the mode energy is caught in one series ofω(l → l′). In the
2DEG, as shown in the energy dispersion diagram in figure 1(b), excitation modes divide
distinctly into collective excitations and SPE, namely the 2D plasmon branch and the SPE
continuum. In the SSEG, however, with decrease inL/a, multipole modes gradually gain
more definite character of collective excitation or SPE. This gradual evolution of the mode
character originates from the finiteness of the SSEG.

Figure 3(a) displays the integrated resonance intensityI of each multipole mode at
L/a = √

2/4 au. The position of each bar represents the energy of each multipole mode
on the abscissa, and the symbol on each bar tip shows the resonance intensityI of each
mode on the ordinate. Various kinds of symbol designate multipole orders in the same
manner as in figure 1(a). Figure 3(b) exhibits theω dependence of the energy-loss function
F(Q, ω) in the SPE continuum and the integrated resonance intensityI of the 2D plasmon
mode atQ = √

2/4 au. In each part of figure 3, the abscissa and the ordinate are both
indicated on a logarithmic scale. In each multipole orderL (>1), the highest-energy mode
has a much stronger resonance intensityI than any other mode, and itsI value is close
to that of the 2D plasmon mode. This analysis of the energy-loss intensity confirms the
above observation that the highest-energy multipole mode corresponds to the 2D plasmon
mode, while other multipole modes correspond to the SPE continuum. Figure 4 exhibits the
values ofRtl andRtl − Rhm for multipole modes atL/a = √

2/4 au and for normal modes
at Q = √

2/4 au. The multipole orderL is indicated on the abscissa together with the
assignment to the 2DEG. The arrows point to the scale (either on the left- or the right-hand
side) which is relevant to a series of points connected by broken lines. As already defined
in equations (21) and (26), the total intensityRtl represents thef sum of the energy-loss
intensity that is obtained by integratingω Im[−1/εL(ω)] or ω Im[−1/ε(Q, ω)] over the
whole positive range ofω. In the SSEG, this intensity involves one, two, four, six and nine
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Figure 3. Energy-loss intensity of (a) multipole modes atL/a = √
2/4 au in the SSEG and (b)

normal modes atQ = √
2/4 au in the 2DEG. In (a), the integrated energy-loss intensityI of

each multipole mode is indicated by a vertical bar at the corresponding value ofω. The symbol
on each bar tip represents the multiple orderL. In (b), the value of the energy-loss functionF

is shown as a function ofω for the SPE modes, and the integrated energy-loss intensityI of
the 2D plasmon mode is indicated by a vertical arrow at the corresponding value ofω with its
intensity value.

multipole modes forL = 1, 2, 3, 4 and 5, respectively, and in the 2DEG, it includes both
a 2D plasmon mode and the SPE continuum. The symbolRhm indicates the component of
the highest-energy mode in thef -sum intensity. Accordingly, the value ofRtl − Rhm is
equal to the sum of the resonance intensity over all the multipole modes but the highest-
energy mode in the SSEG or over the SPE continuum in the 2DEG. Although not shown
in figure 4, the value ofRtl − Rhm vanishes atL = 1, because there is only one mode. As
seen from the difference between the ordinate scale on the left- and right-hand sides, the
values ofRtl − Rhm are two orders of magnitude smaller than those ofRtl . This implies
that, in the same way as the plasmon mode in the 2DEG, the highest-energy mode in the
SSEG occupies the greater part of the total resonance intensityRtl , because of its growing
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Figure 4. f -sum rule analysis of multipole modes atL/a = √
2/4 au in the SSEG and normal

modes atQ = √
2/4 au in the 2DEG. The symbolRtl on the left-hand side denotes thef -sum

intensity of the energy-loss function, while the symbolRhm on the right-hand side represents
the component of the highest-energy mode in thef -sum intensity. The multipole orderL is
indicated on the abscissa together with the assignment to the 2DEG.

collective excitation character. With increase inL, the value ofRtl decreases toward that
of the 2DEG, and the value ofRtl − Rhm increases towards that of the 2DEG. SinceL/a

and Q have the same value, the ratio of theRtl-value of the SSEG to that of the 2DEG
is given by(L + 1)/(L + 1/2) from equations (21) and (26). Accordingly, asL becomes
larger, the value ofRtl of the SSEG approaches that of the 2DEG comparatively slowly.
The aboveL dependence ofRtl andRtl − Rhm suggests that multipole modes with higher
L in the SSEG are similar in character to normal modes in the 2DEG. A multipole mode
with higherL consists of a larger number of transition processes, and it possesses a more
definite character of collective excitation or SPE.

As in other small particles, multipole modes in the SSEG should adequately be
observed by electron energy-loss spectroscopy combined with scanning transmission electron
microscopy [28, 29]. This combined technique can observe multipole modes of individual
particles or SSEGs by means of a highly focused electron beam of severalångstr̈oms width
that can be scanned around target systems. We can control multipole orders of excited modes
by varying the impact parameter and the incident energy that is typically in the range 50–
100 keV. The results of these measurements can be analysed by treating an incident electron
as a classical charged particle moving along a straight line and by calculating the dynamical
response of the target system to the external potential generated by the passing electron
[29–32]. Each (L, M) componentULM(ω) of the external potential at the spherical surface
can be obtained by expanding the external potentialU(r, t) in terms of spherical harmonics
YLM(θ, φ) and by Fourier transforming it with respect to time. Following the theoretical
framework in section 2, we can calculate the dynamical response of the SSEG to each
(L, M) componentULM(ω).

4. Summary

By using the RPA and thef -sum rule approach, we have made a comparative analysis
of multipole excitation modes in a SSEG and normal modes in a 2DEG. In the SSEG,
the electron number and the sphere radiusa are varied simultaneously with the average
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electron density fixed. The quantityL/a in the SSEG, whereL denotes the multipole
order, corresponds to wavenumberQ in the 2DEG. A multipole mode with higherL is
composed of a larger number of transition processes involving angular momentum change.
The results are summarized as follows:

(1) When we compare theL/a dependence of multipole-mode energies with the energy
dispersion of normal modes in the 2DEG, we notice that the series of the highest-energy
multipole modes corresponds to the 2D plasmon branch, while other multipole modes
correspond to the SPE continuum. The latter multipole modes form not a continuous but
a discrete energy distribution because of the finiteness of the SSEG. With increase inL, a
larger number of multipole modes are dispersed in a lower-energy region corresponding to
the SPE continuum of the 2DEG.

(2) With decrease inL/a, the highest-energy multipole mode starts to become distinctly
separated in energy from other modes and takes a more collective excitation character.
On the other hand, asL/a becomes smaller, other multipole modes gradually create an
organized energy distribution owing to various angular momentum changes involved in
constituent transition processes and acquire more SPE character. This gradual evolution of
the mode character originates from the finiteness of the SSEG.

(3) The highest-energy multipole mode occupies the greater part of thef sum of the
energy-loss intensity owing to its growing collective excitation character, when it becomes
well separated in energy from other lower modes. With increase inL, the components of
the highest-energy multipole mode and all the other modes in thef -sum intensity approach
those of the 2D plasmon mode and the lower SPE modes at the corresponding wavenumber
in the f -sum intensity, respectively. This implies that multipole modes with higherL bear
a stronger resemblance in character to normal modes in the 2DEG.
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[4] Dingle R, Sẗormer H L, Gossard A C and Wiegmann W 1978Appl. Phys. Lett.33 665
[5] Störmer H L, Dingle R, Gossard A C, Wiegmann W and Sturge M D 1979Solid State Commun.29 705
[6] Hiyamizu S, Mimura T, Fujii T and Nanbu K 1980Appl. Phys. Lett.37 805
[7] Hiyamizu S, Mimura T, Fujii T, Nanbu K and Hashimoto H 1981Japan. J. Appl. Phys.20 L245
[8] Nagashima A, Nuka K, Itoh H, Ichinokawa T, Oshima C, Otani S and Ishizawa Y 1992Solid State Commun.

83 581
[9] Nagashima A, Nuka K, Satoh K, Itoh H, Ichinokawa T, Oshima C and Otani S 1993Surf. Sci.287–288609

[10] Kroto H W, Heath J R, O’Brien S C, Curl R F and Smalley R E 1985Nature318 162
[11] Kikuchi K, Nakahara N, Wakabayashi T, Suzuki S, Shiromaru H, Miyake Y, Saito K, Ikemoto I, Kainosho

M and Achiba Y 1992Nature357 142
[12] Iijima S 1991Nature354 56
[13] Stern F 1967Phys. Rev. Lett.18 546
[14] Das Sarma S and Quinn J J 1982Phys. Rev.B 25 7603
[15] Jain J K and Allen P B 1985Phys. Rev.B 32 997



10252 T Inaoka

[16] Tzoar N and Zhang C 1986Phys. Rev.B 34 1050
[17] Peeters F M, Wu Xiaoguang and Devreese J T 1987Phys. Rev.B 36 7518
[18] Inaoka T 1992Surf. Sci.273 191
[19] Sato O, Tanaka Y, Kobayashi M and Hasegawa A 1993Phys. Rev.B 48 1947
[20] Sato O, Tanaka Y, Kobayashi M and Hasegawa A 1994J. Phys. Soc. Japan63 4186
[21] Yannouleas C, Bogachek E N and Landman U 1994Phys. Rev.B 50 7977
[22] See, e.g. Messiah A 1961–2Quantum Mechanics(Amsterdam: North-Holland) appendix C
[23] Ishii Y, Ohnishi S and Sugano S 1986Phys. Rev.B 33 5271
[24] Inaoka T 1995J. Phys. Soc. Japan64 1658
[25] Saito S, Bertsch G F and Toḿanek D 1991Phys. Rev.B 43 6804
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