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Abstract. By using the random-phase approximation and fhsum rule approach, we make

a comparative analysis of multipole excitation modes in an electron gas confined on a spherical
surface (SSEG) and normal modes in an electron gas constrained to a flat plane (i.e. a two-
dimensional electron gas (2DEG)). In the SSEG, we investigate the size dependence of multipole
modes by varying the electron number and the sphere radsirmultaneously with the average
electron density fixed. Thé/a dependence of multipole-mode energies, wherdenotes the
multipole order, is compared with the energy dispersion of normal modes in the 2DEG. The
series of the highest-energy multipole modes corresponds to the two-dimensional (2D) plasmon
branch, while all the other multipole modes correspond to the single-particle excitation (SPE)
continuum. With decrease ih/a, each multipole mode acquires more definite character of
collective excitation or SPE, and the highest-energy multipole mode starts to occupy the greater
part of the f-sum intensity. AsL increases withl/a fixed, the components of the highest-
energy multipole mode and all the other multipole modes inftkeum intensity approach those

of the 2D plasmon mode and the SPE modes at the corresponding wavenumberfisihe
intensity, respectively. This indicates that multipole modes with higha@re more analogous

in character to normal modes in the 2DEG. This analysis elucidates similarities and differences
between multipole modes in the SSEG and normal modes in the 2DEG.

1. Introduction

Recent development of synthetic techniques has made it possible to produce a variety of
materials with layered electron systems. Quasi-two-dimensional (2D) electron systems can
be formed at semiconductor—insulator interfaces such as Si{$i3] and at semiconductor
heterojunctions such as GaAs/@&a_,As [4-7]. The monolayer graphite on transition-
metal carbide surfaces also exhibits 2D character in its electronic properties [8,9]. In a
family of fullerene molecules, the electron systems are localized around spherical hollow-
cage structures of carbon atoms [10,11]. In a species of carbon nanotubes, some of
which are metallic, the electron systems are localized around cylindrical tube structures of
carbon atoms [12]. We can understand the essential features of excitations in these layered
electron systems by examining the dynamical response of those electron gases which are
confined on flat planes [13-17], spherical surfaces [18] and cylindrical surfaces [19-21].
This simplified description of layered electron systems allows us to perform most of our
calculations analytically, although we have to beware of its limitations in representing real
systems.

Our previous work has investigated the size dependence of multipole excitation modes
in an electron gas confined on a spherical surface [18]. Hereafter, this electron gas will be

0953-8984/96/4910241+12$19.500) 1996 IOP Publishing Ltd 10241



10242 T Inaoka

abbreviated as SSEG. In this work, the radius of the sphere is varied with the mean electron
density fixed, and the dynamical response of the SSEG is treated within the random-phase
approximation (RPA). A multipole mode higher than a dipole mode is composed of various
electronic transition processes involving change in the orbital angular momentQine

above investigation has shown that, with increase in the size, each multipole mode acquires
a more definite character of collective excitation or single-particle excitation (SPE). This
gradual variation in the mode character, which stems from the finiteness of the SSEG, can be
analysed quantitatively by evaluating the contribution of each constituent transition process
to the energy-loss intensity of the mode.

In the present work, we make a comparative analysis of multipole modes in the SSEG
and normal modes in an electron gas constrained to a flat plane (i.e. a two-dimensional
electron gas (2DEG)). The SSEG resembles the 2DEG in that these electron systems are
both sharply localized in one direction, namely in the radial or plane-normal direction. On
the other hand, the SSEG differs from the 2DEG in that the former is finite. In multipole
modes of the SSEG, the arc length@ L, wherea and L signify the sphere radius and
the multipole order, respectively, characterizes the variation in the induced charge density
along the spherical surface, afida corresponds to the wavenumbg@rin the 2DEG. The
L/a dependence of multipole-mode energies is compared with the energy dispersion of
normal modes in the 2DEG. The mode character is reflected in the energy-loss intensity of
the mode. As a multipole mode takes a more collective excitation character, it occupies
a greater fraction of thef sum of the energy-loss intensity. On the other hand, as a
multipole mode acquires a more SPE character, it occupies a smaller fraction ¢f the
sum intensity. With a change in the multipole orderwe examine thef-sum intensity
and its distribution among multipole modes at choggia, in comparison with thef-sum
intensity and its distribution among normal modes at the corresponding wavenymber
This comparative analysis reveals similarities and differences between multipole modes in
the SSEG and normal modes in the 2DEG.

2. Theory

In this section, we represent an essential part of a theoretical scheme for the following
analysis. Details of the theoretical scheme for multipole modes in the SSEG have already
been given in [18]. By means of the RPA, we investigate the dynamical response of an
electron system to the external potentialoscillating in time with angular frequenay.

First, we formulate the multipole response of the SSEG. For simplicity of treatment,
we assume that the SSEG is spherically symmetric in its ground state, namely that a finite
number of electrons with a closed-shell configuration are confined by a one-electron potential
of spherical symmetry. Each energy eigenstate is specifidddogl m, namely the orbital
angular momentum and the magnetic quantum numbers, and its angular dependence is
described by a spherical harmorlig, (¢, ¢) in spherical polar coordinates with their origin
at the centre of the sphere. Eigenstate$ of O are degenerate with respectig and a
group of 22/ +1)-fold degenerate states including spin constitute an electron shell, which is
labelled!. Each occupied electron shell is completely filled in a closed-shell configuration.
The energy of an electron shélis expressed as

e = h2l(l + 1) /2pa® (1)

with the electron masg and the sphere radius The energy; represents the centrifugal
potential energy or, in other words, the kinetic energy along the spherical surface. The
(L, M) componentU, (@)Y (6, ¢) of the external potential at the spherical surface
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gives rise to the same componéat; ,, (w)Y; 4 (0, ¢) of the induced areal charge density
and, consequently, the componénty, (w)Y. ) (6, ¢) of the total potential at the spherical
surface. The total potentidl is composed of the external potentidl and the induced
Coulomb potential generated By. The (L, M) componentSSo; y (w) and V; y (w) can
be determined by the following equations:

8o (@) = X7 (@) Viy () 2
Vi@ = U@ + - 501(@) 3)
LmM(w) = Uppyw 2L+10LM60
where the susceptibilityg(w) takes the form
2 2
0, . _ € ) I I L fle) — fe)
@ =5, Y @+n@+1 (0 0 0) P o (4)

Lr

In this equation,f(e¢) andn denote the Fermi-Dirac distribution function for eigenstates
and an infinitesimal positive constant, respectively, and the spin degeneracy is taken into
account. The parenthesized %23) array of numbers signifies the Wigney 3ymbol,
whose value vanishes unlegs— /| < L <! +/ and/ +!' + L = even integer [22]. The

3j symbol prescribes which electronic transition processes contribute to excitations of the
electron system. The dielectric function is given by

L I) )

L) = Upy(@)/ Viy(@) =1— ZL”+ -

The energy-loss function defined by

Fr(w) = Im[~1/e. ()] (6)

describes the intensity of the energy loss which occurs in response tb,tli¢)(component

of U. In equation (6), the symbol Im denotes the imaginary part. Energy values of excitation
modes are given by the zeros @f(w), and the integrated energy-loss intenditpf each
mode is defined by the area of the corresponding resonance peak dndbpendence of
Fi(w):

1 =f Fr(w) d(hw) =/ Im[—l/eL(a))] d(hw). )
peak peak

The dielectric function defined in equation (5) as the ratiolgfy, (w) to V,y(w) does

not depend uporM and, consequently, the energy and the energy-loss intensity of each

excitation mode are independentMf whenM is varied in the allowed rangeL < M < L

with L fixed.

As seen from equations (2) and (3), each transition process occurs in response to the total
potential V involving contributions of all the transition processes. This indicates that each
transition process interacts with itself spuriously. We require the self-interation correction
(SIC) to examine quantitatively the electronic structure [23,24] and excitation [25, 26] of
small systems such as small metal spheres [23, 25, 26] and spherical metal shells [24]. In
small metal clusters with electron numh®&r< 40, the SIC yields an appreciable red shift
of the surface-plasmon energy, which leads to better agreement with experimental results
(see table 2 in [25] or [26]). In our analysis, we calculate multipole modes in the SSEG
in a broad size region & N < 1352. Although our treatment without the SIC may cause
appreciable inaccuracy in the smalldsrange in this broad size region, it has no substantial
influence on our analysis in the next section.
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The dynamical response of the 2DEG can be formulated in a similar manner to that of

the SSEG [13]. Each excitation mode specified by waveva@tand angular frequency
is described by the following pair of equations:

30(Q, ») = x°(Q, »)V(Q, o) ®)

V(Q. ) =U(Q, w)+(27/Q) 30(Q, w) 9)
where the susceptibility °(Q, ) is written in the form
K F(K+Q) - f(K)
2r)2e(K+ Q) —e(K) +how+in’
In this equatione(K) is the energy dispersion of electrons givendiys) = h2K?/2u,

and f(K) is the Fermi—-Dirac distribution function for electron sta& The dielectric
function€(Q, w) is given by

x°(Q, w) = 26 (10)

€Q, 0)=U(@Q, »)/V(Q, w)=1-21/Nx°Q, w) (1)
and the energy-loss functiofi(Q, w) is defined by
For each 2D plasmon mode, the integrated energy-loss intehsstylefined by
I =/ F(Q, w) dw) :/ Im[—1/e(Q, )] d(hw) (13)
peak peak

in the same manner as in equation (7). At temperafure 0, the Fermi—Dirac distribution
function f(K) becomes a step function, and tl€ integral in equation (10) can be
performed analytically [13].

Next, we derive thef-sum rules, namely the sum rules for the energy-loss function
of the SSEG and the 2DEG. The susceptibilitf(w) in equation (2) orx%(Q, ) in
equation (8) describes the independent-particle response to the total self-consistent potential
V. Alternatively, we can introduce the susceptibiligy that describes the response of
interacting electrons to the external potential In terms of x, we can generally express
the induced charge densidy in real space as

Sp(r, ) = /dgr/ x(r, v, o)U[, w). (14)

The susceptibilityx (r, 7, w) is what is called the retarded density correlation function.
The susceptibilityy (r, 7/, w) satisfies the following sum rule [27]:

00 2
% / do o Im[x(r, 7', w)] = %[no(r) AS(r —7") + Vno(r) - V8(r — r’)] (15)
whereng(r) is the number density of interacting electrons in the ground statepasnt V

signify the Laplacian and the gradient operator, respectively, with respeact We apply

the general sum rule in equation (15) to our special cases of the SSEG and the 2DEG. The
SSEG can be regarded as an electron system sharply localized around a spherical surface
atr = a, and the ground-state density(r) is assumed to be spherically symmetric. The
susceptibility x; (w) describing the L, M) excitation mode as

dorm(@) = xL(@)ULy(w) (16)
can be obtained by integrating(r, v, ») as

1
@ = f r f B Y20, $)x(r. v )Y@ &) (17)
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and the Diracs function in equation (15) can be written as

8 _ A
s(r—1') = (rrz S Vi@ 9@ ¢ (18)
LM

in terms of spherical harmonics. The two variable set&rob, ¢) and (', 6', ¢') are the
spherical polar coordinates that represent the position veetansd »', respectively. By

using equations (17) and (18), we can convert the general expression (15) to the sum rule
for x.(w):

e2

2

ng
ua

% /OO do w Im[XL(a))] =—L(L+1) (29)

wheren; is the electron number per unit area in the ground state. The dielectric function
€ (w) is related toy, (w) by

1 14 4ra
er(w) 2L +1

xL(w) (20)

and the real and imaginary parts of (w) are an even function and an odd function,
respectively, ofv. Accordingly, equation (19) can be rewritten as

o 1 7 L(L 4+ 1) 4nnge?
R, = d | — = — . 21
g /o “ m[ eL(w)] 2 2L+1 (21)

This is the f-sum rule for multipole excitations in the SSEG.

The 2DEG is an electron system sharply localized around a plane, and the ground-
state densityig(r) is assumed to be uniform along the plane. The susceptibili®, »)
describing thel? mode as

50(Q, w) = x(Q, »)U(Q, w) (22)

is given by

x(Q, ») =%/d3r/d3r’ exp(—iQ - R)x(r, 7, ») exp(iQ- R (23)

where A is the area of the plane arf@ represents the plane-parallel component ofor
the § function in equation (15), we employ the expression

1 i
sr—r)=8(z—2)7 ) expliQ- (R— R (24)
A Q
where thez axis is taken to be normal to the plane. With the aid of equations (23) and

(24), we can obtain the sum rule fgrQ, w):

o9 2
3/ do o IM[x(Q, ®)] = —%QZ (25)

T [}

which leads to thef-sum rule already known [13]:

o0 1 7T 27 n,e?
Rzl=/0 da)a)lm[—e(Q’ w)i|=2 " 0. (26)
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3. Analysis

By means of the theoretical framework in the preceding section, we examine multipole
excitation modes in the SSEG in an order rangé L < 5 and normal modes in the 2DEG.

In the SSEG, we vary the electron numbérand the sphere radius simultaneously with

the average electron densiiy fixed, and we choose electron systems with closed-shell
configurations. The fixed,-value corresponds to the electron density paramegtet 2,
wherer, is related ton, by

n(rsag)zns =1 (27)
with the Bohr radiusiz = 7?/ue?. The sphere radiug can be expressed as
ajag = N'Nry/2 (28)

in terms of N andr,. We employ the same,-value for the 2DEG also. We can compare

the size dependence of multipole-mode energies of the SSEG in figure 1(a) with the energy

dispersion of normal modes of the 2DEG in figure 1(b). In the SSEG, the electron ndmber

is varied in the range & N < 1352. The arc length;, = 2wa/L in the SSEG characterizes

the variation in the induced charge density along the spherical surface in a similar fashion

to the wavelengthh = 27/Q in the 2DEG. Accordingly, the value df/a in the SSEG

can be considered to correspond to the wavenungbén the 2DEG. In figure 1(a), full

circles, full triangles, open circles, open triangles and open squares indicate energy values

of multipole modes of ordeL. = 1, 2, 3, 4 and 5, respectively, as functionsiofa. In

figure 1(b), a curve and a shaded area represent the dispersion branch of 2D plasmons and

the SPE continuum, respectively. Plasmon modes decay away when they enter the SPE

continuum. The abscissa and the ordinate are both indicated on a logarithmic scale and in

atomic units (au). In figure 1(a), the broken and chain lines are the guide linds/@f"/?

and L/a, respectively, to view the size dependence. Similarly, in figure 1(b), the broken

and chain lines are the guide lines @f/2 and Q, respectively, to see th@ dependence.

As exhibited in figure 1(a), energy values of the highest-energy multipole modes in the

SSEG line up substantially on the same curve independeht afich corresponds to the

plasmon branch of the 2DEG in figure 1(b). On the other hand, the energy values of all the

other multipole modes in the SSEG are dispersed in a lower region, and the upper series

of the energy points corresponds to the upper edge of the SPE continuum in figure 1(b).

With decrease in./a and Q, the sequence of the highest-energy multipole modes and the

plasmon branch begin to vary &&/a)Y/? and Q%/2?, respectively, while the upper series

of the lower multipole modes and the upper edge of the SPE continuum start to vary as

L/a and Q, respectively. Figure 2 displays only the energy pointé. e 5 extracted from

figure 1(a). TheL/a dependence of mode energies in each order &f L < 4 can be

deduced from figure 1 in our previous work [18], although the plot in this figure is for a

narrower size range & N < 512. A dipole mode ofL = 1 is constituted only by the

transition process fronir to I + 1 (Al = 1). Here,lr denotes the angular momentum

of the highest occupied shell. A quadrupole model.of 2 is made up of two transition

processes ofr — I +2 andly — 1 — [ +1 (Al = 2) unlessir = 0. A multipole mode

of higher L is composed of a larger number of transition processes involving a charge in
We focus our attention on multipole modes bf= 5 in figure 2. Whenlp < 4,

that is L/a < +/2/r, au, each mode is composed of five transition processes! ¢t 5

(lp —>Ilp+5 lr—1—=>Ilp+4, lp—2—1p+3, Ir—3—1p+2, I[r—4— [r+1), three

processes oAl =3 (I > Ir+3, Ir—1— I+ 2, I —2— lr +1) and one process of

Al =1 (I — Ir + 1). These nine processes in all lead to nine modes at each size, except
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Figure 1. Comparison of (a) thé./a dependence of multipole-mode energies in the SSEG with
(b) the energy dispersion of normal modes in the 2DEG. The fixed average electron density
corresponds to the electron density parametet 2. In (b), PL and SPE denote the plasmon
branch and the single-particle excitation continuum, respectively.

for the case of - = 4 where two of these processes happen to have the same energy change.
We letw (I — [’) denote the energy change involved in the procegs-ofl/’. With decrease

in L/a, the values otw(I — 1) for Al =5 or 3 gradually converge to form a fine series

that is separate from other(! — [’) values in energy distribution and that variesaas.

A transition process operates to enhance the energy-loss intensity when its energy change
o(l — ') is lower than the mode energy, while a transition process acts to reduce the
energy-loss intensity when its energy chaagé — [’) is higher than the mode energy. At

each size, the energy of the highest-energy mode is higher than any vade-ef I’) and,

in this mode, all the constituent transition processes cooperate to enhance the energy-loss
intensity. With decrease ih/a, the energy of the highest-energy mode begins to become
definitely separated from the energy values of other modes, and the constituent transition
processes tend to make more comparable contributions to the excitation. This indicates that
the highest-energy mode acquires a more collective excitation character [18]. Next, we turn
our attention to lower-energy modes. Each energy of these modes intervenes between two
adjacent values ab(I — 1’). Accordingly, following the above-mentioned size dependence

of w(l — I'), with decrease irL/a, energy values of these modes start to vary.@sand

divide into two fine series and one isolated value, as exhibited in figure Z/Adecomes
smaller, a small number of transition processes whose energy changes are close to the mode
energy start to make the dominant contribution to the energy-loss intensity, and there occurs
a stronger cancellation between those transition processes whose energy changes are just
below and above the mode energy. This implies that lower-energy modes take more SPE
character with decrease in/a [18]. Incidentally, when the mode energy lies between two
series ofw (I — 1") with different! changes, this variation in the mode character is not so
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Figure 2. L/a dependence of multipole-mode energies with= 5, drawn from the entire plot
in figure 1(a).

remarkable as it is when the mode energy is caught in one seriegiof> [I'). In the
2DEG, as shown in the energy dispersion diagram in figure 1(b), excitation modes divide
distinctly into collective excitations and SPE, namely the 2D plasmon branch and the SPE
continuum. In the SSEG, however, with decreasd. jia, multipole modes gradually gain
more definite character of collective excitation or SPE. This gradual evolution of the mode
character originates from the finiteness of the SSEG.

Figure 3(a) displays the integrated resonance intensitf each multipole mode at
L/a = +/2/4 au. The position of each bar represents the energy of each multipole mode
on the abscissa, and the symbol on each bar tip shows the resonance intesfsiach
mode on the ordinate. Various kinds of symbol designate multipole orders in the same
manner as in figure 1(a). Figure 3(b) exhibits thelependence of the energy-loss function
F(Q, w) in the SPE continuum and the integrated resonance intehsifythe 2D plasmon
mode atQ = +/2/4 au. In each part of figure 3, the abscissa and the ordinate are both
indicated on a logarithmic scale. In each multipole orflg>1), the highest-energy mode
has a much stronger resonance intengitthan any other mode, and ifsvalue is close
to that of the 2D plasmon mode. This analysis of the energy-loss intensity confirms the
above observation that the highest-energy multipole mode corresponds to the 2D plasmon
mode, while other multipole modes correspond to the SPE continuum. Figure 4 exhibits the
values ofR,; andR,; — Ry, for multipole modes al /a = +/2/4 au and for normal modes
at Q = +/2/4 au. The multipole ordel. is indicated on the abscissa together with the
assignment to the 2DEG. The arrows point to the scale (either on the left- or the right-hand
side) which is relevant to a series of points connected by broken lines. As already defined
in equations (21) and (26), the total intensRy, represents thg' sum of the energy-loss
intensity that is obtained by integrating Im[—1/¢; (w)] or w Im[—1/¢(Q, w)] over the
whole positive range ab. In the SSEG, this intensity involves one, two, four, six and nine
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Figure 3. Energy-loss intensity of (a) multipole modesiata = /2/4 au in the SSEG and (b)
normal modes ap = +/2/4 au in the 2DEG. In (a), the integrated energy-loss intensitf
each multipole mode is indicated by a vertical bar at the corresponding valueie symbol
on each bar tip represents the multiple orderin (b), the value of the energy-loss functiéh
is shown as a function ab for the SPE modes, and the integrated energy-loss intehgity
the 2D plasmon mode is indicated by a vertical arrow at the corresponding vatuavith its
intensity value.

multipole modes fori, = 1, 2, 3, 4 and 5, respectively, and in the 2DEG, it includes both

a 2D plasmon mode and the SPE continuum. The symiplindicates the component of

the highest-energy mode in thésum intensity. Accordingly, the value &, — Ry, is

equal to the sum of the resonance intensity over all the multipole modes but the highest-
energy mode in the SSEG or over the SPE continuum in the 2DEG. Although not shown
in figure 4, the value oR,, — R, vanishes af. = 1, because there is only one mode. As
seen from the difference between the ordinate scale on the left- and right-hand sides, the
values ofR,; — Ry, are two orders of magnitude smaller than thoseRgf This implies

that, in the same way as the plasmon mode in the 2DEG, the highest-energy mode in the
SSEG occupies the greater part of the total resonance inteRgjitpecause of its growing
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Figure 4. f-sum rule analysis of multipole modes Ata = +/2/4 au in the SSEG and normal
modes atQ = +/2/4 au in the 2DEG. The symbat,; on the left-hand side denotes tifesum
intensity of the energy-loss function, while the symli),, on the right-hand side represents
the component of the highest-energy mode in yheum intensity. The multipole ordet is
indicated on the abscissa together with the assignment to the 2DEG.

collective excitation character. With increaselinthe value ofR,; decreases toward that

of the 2DEG, and the value at,;, — R;,, increases towards that of the 2DEG. Sirci:

and Q have the same value, the ratio of tiRg-value of the SSEG to that of the 2DEG

is given by(L + 1)/(L + 1/2) from equations (21) and (26). Accordingly, Asbecomes
larger, the value ofR,; of the SSEG approaches that of the 2DEG comparatively slowly.
The aboveL dependence oR,, and R,; — R;,, suggests that multipole modes with higher

L in the SSEG are similar in character to normal modes in the 2DEG. A multipole mode
with higher L consists of a larger number of transition processes, and it possesses a more
definite character of collective excitation or SPE.

As in other small particles, multipole modes in the SSEG should adequately be
observed by electron energy-loss spectroscopy combined with scanning transmission electron
microscopy [28, 29]. This combined technique can observe multipole modes of individual
particles or SSEGs by means of a highly focused electron beam of séwgstbms width
that can be scanned around target systems. We can control multipole orders of excited modes
by varying the impact parameter and the incident energy that is typically in the range 50—
100 keV. The results of these measurements can be analysed by treating an incident electron
as a classical charged particle moving along a straight line and by calculating the dynamical
response of the target system to the external potential generated by the passing electron
[29-32]. Each [, M) componentl, , (w) of the external potential at the spherical surface
can be obtained by expanding the external potebtial, ¢) in terms of spherical harmonics
Ym0, ¢) and by Fourier transforming it with respect to time. Following the theoretical
framework in section 2, we can calculate the dynamical response of the SSEG to each
(L, M) componentl; y (w).

4. Summary

By using the RPA and the-sum rule approach, we have made a comparative analysis
of multipole excitation modes in a SSEG and normal modes in a 2DEG. In the SSEG,
the electron number and the sphere radiuare varied simultaneously with the average
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electron density fixed. The quantity/a in the SSEG, wherd. denotes the multipole
order, corresponds to wavenumbg@rin the 2DEG. A multipole mode with highek is
composed of a larger number of transition processes involving angular momentum change.
The results are summarized as follows:

(1) When we compare the/a dependence of multipole-mode energies with the energy
dispersion of normal modes in the 2DEG, we notice that the series of the highest-energy
multipole modes corresponds to the 2D plasmon branch, while other multipole modes
correspond to the SPE continuum. The latter multipole modes form not a continuous but
a discrete energy distribution because of the finiteness of the SSEG. With increlasa in
larger number of multipole modes are dispersed in a lower-energy region corresponding to
the SPE continuum of the 2DEG.

(2) With decrease il /a, the highest-energy multipole mode starts to become distinctly
separated in energy from other modes and takes a more collective excitation character.
On the other hand, as/a becomes smaller, other multipole modes gradually create an
organized energy distribution owing to various angular momentum changes involved in
constituent transition processes and acquire more SPE character. This gradual evolution of
the mode character originates from the finiteness of the SSEG.

(3) The highest-energy multipole mode occupies the greater part of them of the
energy-loss intensity owing to its growing collective excitation character, when it becomes
well separated in energy from other lower modes. With increade, ithe components of
the highest-energy multipole mode and all the other modes irf them intensity approach
those of the 2D plasmon mode and the lower SPE modes at the corresponding wavenumber
in the f-sum intensity, respectively. This implies that multipole modes with highbear
a stronger resemblance in character to normal modes in the 2DEG.
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